(3) $s_{\text {max }}=2 \times \operatorname{MIN}[\mathrm{OX}(1), \mathrm{OX}(2)]$
$r_{\min }=1.0 \AA, r_{\text {max }}=2.5 \AA$ $s_{\min }=0.15 \times$ MAX [OX (1), OX(2)]
$r_{\text {min }}=1.0 \AA$
$r_{\text {max }}=2 \cdot 0+0.075$
$\times[P(1)+P(2)] \AA$
(4) $s_{\max }=1.5$
$r_{\text {min }}=1.0 \AA$
$s_{\max }=0.38 \times \mathrm{OX}\left(C M^{*}\right) \quad r_{\max }=1.4+0.1 \times P(C M)+0.2$

$$
\times P(C T) A
$$

Exceptions: if $C M^{*}$ is $\mathrm{C}(+2)$

$$
\begin{aligned}
s_{\max } & =3.6 \\
s_{\min } & =0.038
\end{aligned}
$$

$r_{\text {min }}=1.0 \AA$
$r_{\text {max }}=3.0 \AA$
(5) $s_{\max }=2 \times \operatorname{MIN}[O X(1), O X(2)] \quad r_{\min }=1.0 \AA$ $s_{\text {min }}=0.15 \times$ MAX [OX $\left.(1), \mathrm{OX}(2)\right] \quad r_{\text {min }}=0.9+0.2$

$$
\times[P(1)+P(2)] \AA
$$

$r_{\text {min }}=1.0 \AA$
$r_{\max }=3.4 \AA$

Module (2). Calculation of bonds
If $\left|s_{\max }\right|>0$ and bond-valence parameters are available, set $r_{\text {max }}$ and $r_{\text {min }}$ from $s_{\min }$ and $s_{\text {mix }}$ respectively.

Calculate all distances lying between $r_{\text {min }}$ and $r_{\max }$.
If either atom is $C(+2), N(-1)$ or $N(-2)$, any interatomic vector closer than 55° to a shorter vector is removed from the bond list. This is necessary to eliminate distances to second neighbours, e.g. metal $\cdots \mathrm{O}$ in $\mathrm{M}-\mathrm{C}-\mathrm{O}$ and $\mathrm{N}(1) \cdots \mathrm{H}$ in $\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{H}$.

Module (3). Bond calculation check
(i) Calculate the bond valence from the bond lengths using $s=$ $\exp \left[\left(r_{0}-r\right) / B\right]$ based on tabulated values of r_{0} and B or, if these are not available, values calculated using the algorithm of Brown \& Altermatt (1985).
(ii) Modify the bond valence as follows:
(a) If either atom is H and $s>0.8$ set $s=0.8 \mathrm{v}$.u. (allows for unrealistically short $X-H$ bonds).
(b) If the terminal atom is a cation change sign of s.
(c) If OC (terminal) $<\mathrm{OC}($ central) set $s=[\mathrm{OC}(t) / \mathrm{OC}(c)] \times s$ (allows for cases where the terminal atom is substitutionally disordered).
(iii) Sum the valences of heteroionic bonds around the central atom

$$
\Sigma_{i}=\sum_{j} s_{i j}(C-A)
$$

(homoionic bonds do not contribute to the assigned oxidation number).
Add -0.8 v.u. for each dummy H atom attached to the central atom.
(iv) Check the difference between the oxidation number of the central atom and its bond-valence sum. Let $\Delta=0.25+(1 \cdot 1-\mathrm{OC})|\mathrm{OX}|$ be the permitted tolerance where OC and OX refer to the central atom. (This allows an increase in the tolerance for central atoms that have high oxidation states or low occupation numbers.)

Then agreement is satisfactory if
$|O X-\Sigma|<\Delta$

$\|O X+\Sigma\|<\Delta$	(bond valences may have wrong sign, e.g. for
$\|O X-\Sigma\|<0.5$	CO and CN)
if central atom is H	
$-0.7<\mathrm{OX}-\Sigma<0.3$	if central atom is $\mathrm{O}, \mathrm{S}, \mathrm{F}$ or Cl and the structure contains undetermined H atoms (allows for acceptor hydrogen bonds whose lengths cannot
$\|3-\Sigma\|<\Delta$	be calculated) if central atom is $\mathrm{C}(+2)$ (cyanide groups need

$$
|3-\Sigma|<\Delta \quad \begin{array}{ll}
\text { if central atom is } C(+2) & \text { (cyanide groups need } \\
\text { snecial treatment) }
\end{array}
$$ special treatment).

Any atom whose bonding fails all the above tests is flagged as follows: WARNING if $|\mathrm{OX}-\Sigma|<0.8$ ERROR if $|O X-\Sigma|>0.8$.
In addition an ERROR flag is set
(i) if any atom is found to form no bonds, or
(ii) if distances are found with $r<r_{\min }$ and $O C(1)+O C(2)>1 \cdot 0$. (In this case it is impossible for the two sites to be simultaneously occupied.)

Module (4). Error analysis
If a WARNING or an ERROR is flagged, check:
(i) Does the cell correspond to space-group setting:
(a) For hexagonal, trigonal and rhombohedral (hexagonal setting) is $\gamma=120 .{ }^{\circ}$?
(b) For monoclinic, are the correct two angles 90° for the setting used?
(ii) Does the number of assigned H atoms correspond to the number of dummy H atoms given? If not, how many H atoms would have to be attached to each anion to give the correct valence sums?
(iii) Is the coordination number of $\mathrm{P}(+5), \mathrm{S}(+6)$ and $\mathrm{Cl}(+7)$ equal to 4 ?
(iv) Does any bond exceed its maximum possible valence? i.e. is $s>$ MIN [OX(1), OX(2)].
(v) Does a halogen anion form no bonds in a structure where H -atom coordinates have not been determined? In this case the anion probably only forms hydrogen bonds.

All of the above tests will print an appropriate diagnostic statement if the error condition is found.

References

Bergerhoff, G., Hundt, R., Sievers, R. \& Brown, I. D. (1983). J. Chem. Inf. 23, 66-69.

BIDICS (1969-1981). Bond Index to the Determinations of Inorganic Crystal Structures. Institute for Materials Research, McMaster Univ., Hamilton, Ontario, Canada. Published in annual volumes.
Brown, I. D. (1978). Chem. Soc. Rev. 7, 359-376.
Brown, I. D. \& Altermatt, D. (1985). Acta Cryst. B41, 244-247.
Donnay, G. \&. Allmann, R. (1970). Am. Mineral 55, 10031015.

Hall, S. R. (1981). Acta Cryst. A37, 517-525.
Loening, K. L. (1984). J. Chem. Educ. 61, 136.

Bond-Valence Parameters Obtained from a Systematic Analysis of the Inorganic Crystal Structure Database

By I. D. Brown and D. Altermatt
Institute of Materials Research, McMaster University, Hamilton, Ontario, Canada L8S 4M1

(Received 11 December 1984; accepted 1 March 1985)

Abstract

The parameters needed to calculate bond valences from bond lengths have been determined for 750 atom pairs using the Inorganic Crystal Structure Database. The most accurate 141 are listed and an algorithm is

given which allows the calculation of the remainder as well as the calculation of parameters for over a thousand other bond types. Graphical bond-valence-bond-length correlations are presented for hydrogen bonds.

Determination of bond-valence parameters

The preceding paper (Altermatt \& Brown, 1985) describes a program (SINDBAD) which determines the chemical connectivity in an inorganic crystal. Essential to the running of this program are the parameters required for calculating the bond valences. Two expressions are commonly used to describe the relationship between the bond length (r) and the bond valence (s)

$$
\begin{equation*}
s=\left(r / r_{0}\right)^{-N} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
s=\exp \left[\left(r_{0}-r\right) / B\right], \tag{2}
\end{equation*}
$$

where r_{0}, N and B are empirically determined parameters, many of which have been tabulated (Brown \& Wu, 1976; Brown, 1980).
The bond file produced from the Inorganic Crystal Structure Database (ICSD) (Bergerhoff, Hundt, Sievers \& Brown, 1983) by the program SINDBAD provides an ideal resource to refine these parameters which are usually determined by fitting equation (3) (relating V_{i}, the oxidation state of cation i, to $s_{i j}$, the valence of the bond between the cation i and the anion j) to the environments found around a number of cations (Brown \& Shannon, 1973):

$$
\begin{equation*}
V_{i}=\sum_{j} s_{i j} . \tag{3}
\end{equation*}
$$

Reliable values can be found with 10 to 20 cation environments, but the more that are used, the better the resulting parameters.
Equation (2) has a particular advantage over equation (1) because B, unlike N, varies very little from one atom pair to another. By refining B (i.e. selecting the value of B that gives the smallest value of σ^{\prime} described below) it is found that B could rarely be determined to better than 0.05 and that a value of 0.37 was consistent with most or all of the refined values. By assuming this value for B, only one parameter (r_{0}) remains to be fitted and this can be done exactly for each cation environment by solving the equation

$$
\begin{equation*}
V_{i}=\sum_{j} s_{i j}=\sum_{j} \exp \left(\frac{r_{0}^{\prime}-r_{i j}}{B}\right) \tag{4}
\end{equation*}
$$

for r_{0}^{\prime}. A value of r_{0}^{\prime} is calculated for each cation environment in the ICSD in which the ligands are chemically identical and in which there is no disorder. The resultant values are then averaged to give the best value for r_{0} for a given ion pair.

The estimated standard deviation (σ^{\prime}) of r_{0}^{\prime} gives a measure of the extent to which the various cation environments give a consistent result. Except for the alkali metals where $\sigma^{\prime} \sim 0.09 \AA$, the standard deviation generally lies in the range 0.01 to $0.05 \AA$, giving rise to an estimated standard error $\left(\sigma_{e}\right)$ in the value
of r_{0} that is usually less than $0.01 \AA$ when more than 10 cation environments are available for a given atom pair. In cases where the number of cation environments warranted, restricting the calculations to structures with crystallographic R factors less than $0 \cdot 12$ generally lowered σ^{\prime} except for the alkali metals. In these latter cases the large standard deviation represents a real physical variation in cation environment and not merely experimental error.
In total, 750 values of r_{0} were determined from 15371 different cation environments obtained from the ICSD. Table 1 gives the 141 most reliable values of r_{0} and includes $\sigma_{e}, \sigma^{\prime}$ and the number (n) of cation environments used in calculating r_{0}. The criterion for inclusion of r_{0} in Table 1 is that $\sigma_{e} \leqslant 0.01 \AA$ and $n \geqslant 10$.
The results of this analysis were examined for the systematic variation of r_{0} with the position of the ions in the Periodic Table. The equation

$$
\begin{equation*}
r_{0}=r_{c}+A \times r_{a}+P-D-F \tag{5}
\end{equation*}
$$

can generally reproduce the well determined values to within about $0.013 \AA$ (standard deviation) or within about $3 \sigma_{e}$. In this equation r_{c} and r_{a} are contributions to r_{0} from the cation and anion respectively as given in Table 2 (r_{a} for oxygen is arbitrarily chosen as zero). The multiplier A is set to 0.8 for transitionmetal ions (groups 3-12) with d electrons present, otherwise it is set to $1 \cdot 0$.
P, D and F are corrections required when the cation contains non-bonding p, d and f electrons respectively. The values of D are given in Table 3; the values of P and F are calculated using:

$$
\begin{aligned}
& P=0.0175 \times(\text { cation period }-2) \\
& F=0.016 \times \text { number of } f \text { electrons. }
\end{aligned}
$$

The values of r_{0} calculated using this algorithm are not as good as the selected experimental values given in Table 1 but for the remaining 609 (those with $\sigma_{e}>0.01 \AA$ or $n<10$) the calculated values are probably as good as or better than those determined experimentally. Furthermore, the program can be used to predict values of r_{0} for over a thousand cation-anion combinations whose valence parameters have not yet been determined.

Determining the valence of hydrogen bonds

Hydrogen bonds are of particular interest because of their importance in solid-state chemistry. All distances between 0.95 and $3.2 \AA$ have been observed for $\mathrm{O}-\mathrm{H}$ bonds and over a range of this magnitude it would be surprising if any equation as simple as (1) or (2) could give a good fit. Furthermore, the study of hydrogen bonding is complicated by the fact that the H atom itself is often not well located. Both these considerations require that hydrogen bonds be

Table 1. The bond-valence parameter r_{0} for selected bonds
B has been set to 0.37 . An R in the last column indicates that the averaging was restricted to structures with agreement index less than $0 \cdot 12$. Other symbols are defined in the text.

		$r_{0} \quad \sigma_{e}$	σ^{\prime}	n			$r_{0} \quad \sigma_{e}$	$\boldsymbol{\sigma}^{\prime}$	\boldsymbol{n}
Ag 1	O-2	1.842 (9)	0.063	$48 R$	Mg 2	O-2	1.693 (3)	0.040	$206 R$
Ag 1	S -2	$2 \cdot 119$ (7)	0.042	$42 R$	Mn2	$\mathrm{Cl}-1$	$2 \cdot 133$ (10)	0.037	16
Al 3	$\mathrm{Cl}-1$	2.032 (7)	0.037	30	Mn 2	F-1	1.698 (5)	0.020	$17 R$
Al 3	F-1	1.545 (2)	0.007	22 R	Mn 2	O-2	1.790 (3)	0.033	$173 R$
Al 3	O-2	1.651 (2)	0.037	397 R	Mn 3	O-2	1.760 (5)	0.036	$51 R$
As 3	O-2	1.789 (5)	0.023	24 R	Mn 4	O-2	1.753 (6)	0.020	$13 R$
As 3	S -2	2.272 (4)	0.022	26 R	Mo6	O-2	1.907 (2)	0.027	$186 R$
As 5	F-1	1.620 (10)	0.038	$16 R$	N 3	O-2	1.361 (9)	0.037	$17 R$
As 5	O-2	1.767 (3)	0.028	$86 R$	N 5	O-2	1.432 (2)	0.016	$106 R$
B 3	F-1	$1 \cdot 281$ (3)	0.009	$11 R$	Na 1	F-1	1.677 (8)	0.089	126
$\begin{array}{ll}\text { B } & 3 \\ \end{array}$	O-2	$1 \cdot 371$ (1)	0.019	$436 R$	Na 1	O-2	1.803 (3)	0.080	$634 R$
Ba 2	F-1	2.188 (6)	0.031	30	Na 1	S -2	$2 \cdot 300$ (10)	0.056	$31 R$
Ba 2	O-2	$2 \cdot 285$ (4)	0.063	254 R	Nb 5	O-2	1-911 (2)	0.031	228
Ba 2	S -2	2.769 (7)	0.062	88	Nd 3	O-2	$2 \cdot 105$ (5)	0.043	80
Be 2	F-1	1.281 (4)	0.019	$22 R$	Ni 2	F-1	1.596 (5)	0.020	18 R
Be 2	O-2	1.381 (3)	0.019	43 R	Ni 2	O-2	1.654 (4)	0.034	$72 R$
Bi 3	O-2	2.094 (9)	0.061	$52 R$	P 5	N-3	1.704 (4)	0.021	30 R
Bi C	$\mathrm{S} \quad 2$	2.570 (3)	0.015	$20 R$	P 5	O-2	1.617 (1)	0.017	543 R
C 4 C	$\mathrm{N}-3$ $\mathrm{O}-2$	$1.442(4)$ 1.390	0.017	18	$\begin{array}{ll}\mathrm{P} & 5\end{array}$	S -2	$2 \cdot 145$ (10)	0.044	21
C 4 Ca 2	$\mathrm{O}-2$	1.390 (2)	0.017	72 R	Pb 2	O-2	2-112 (4)	0.050	$174 R$
Ca 2 Ca 2	F-1	1.842 (8)	0.031	$15 R$	Pb 2	S -2	$2 \cdot 541$ (6)	0.037	46 R
Ca 2 Cd 2	O $\mathrm{Cl}-2$	$1.967(2)$ $2.212(9)$	0.052 0.030	$450 R$	Pb 4	O-2	2.042 (8)	0.036	21
Cd 2	$\mathrm{Cl}-1$ $\mathrm{O}-2$	$2.212(9)$ $1.904(4)$	0.030 0.035	12 P \%		$\mathrm{O}-2$	2.138 (10)	0.050	$25 R$
Cd 2	S -2	$1.904(4)$ 2.304 (4)	0.035 0.014	$93 R$ $15 R$		$\begin{array}{lr}\text { C } \\ \mathrm{O} & -2\end{array}$	$1.760(8)$ $1.879(10)$	0.036	19
Cl 7	O-2	1.632 (5)	0.029	$30 R$	$\begin{array}{ll}\mathrm{Pl} & 4 \\ \mathrm{Rb} & 1\end{array}$	$\mathrm{Cl}-1$ $\mathrm{Cl}-1$	$1.879(10)$ $2.652(10)$	0.037 0.052	14
Co 2	$\mathrm{Cl}-1$	2.033 (8)	0.026	$11 R$	Rb 1	O-2	2.263 (9)	0.096	${ }_{128}$
Co 2	$\mathrm{O}-2$	1.692 (5)	0.039	$65 R$	S 2	N-2	1.597 (3)	0.008	11
Co 3	C 2	1.634 (2)	0.007	10	S 2	N-3	1.682 (9)	0.039	17
Cr 3	F-1	1.657 (5)	0.018	16	S 4	N-3	1.762 (5)	0.027	27
Cr 3	O-2	1.724 (4)	0.022	37 R		O-2	1.644 (9)	0.033	16
Cr 6	$\mathrm{O}-2$	1.794 (2)	0.020	$80 R$		O-2	1.624 (1)	0.019	$243 R$
Cs 1	$\mathrm{Cl}-1$	2.791 (10)	0.071	48 R	Sb 3	F-1	1.883 (7)	0.023	$13 R$
Cs 1 Cu 1	$\mathrm{O}-2$ I -1	$2 \cdot 417(10)$ $2 \cdot 108(10)$	0.078	60 R	Sb 3	O-2	1.973 (4)	0.026	37 R
Cu 1	$\begin{array}{ll}\text { I } & -1 \\ \text { S } & -2\end{array}$	$2 \cdot 108(10)$ $1.898(3)$	0.034 0.037	13 R		S -2	2.474 (5)	0.050	87
Cu 2	$\begin{array}{ll}\text { S } & -2 \\ \text { F }-1\end{array}$	$1.898(3)$ $1.594(4)$	0.037 0.020	$131 R$ 28	Sb 5 Sb	F-1	1.797 (5)	0.024	$24 R$
Cu 2	O-2	1.679 (2)	0.032	$28 R$ 197	Sb 5 Sc 3	O $\mathrm{O}-2$ -2	$1.942(8)$ 1.849 (5)	0.057	47
Cu 2	S -2	2.054 (5)	0.018	$12{ }^{R}$	Sc 3 Sc 3	O S	$1.849(5)$ $2.321(5)$	0.027 0.017	34 R
D 1	O-2	0.927 (6)	0.041	$51 R$		O-2	1.811 (5)	0.022	218
Dy 3	O-2	2.001 (9)	0.033	$14 R$	Se 6	O-2	1.788 (2)	0.011	$23 R$
Er 3	F-1	1.904 (6)	0.018	10		C -4	1.883(1)	0.006	37
Er 3	O -2	1.988 (7)	0.030	20 R		N-3	1.724 (3)	0.014	20 R
Eu 2	S -2	2.584 (10)	0.029	10		O-2	1.624 (1)	0.018	$988 R$
Eu 3	O-2	2.074 (5)	0.016	$11 R$	Si 4	S -2	$2 \cdot 126$ (4)	0.013	$12 R$
Fe 2 Fe 3	O C -2	1.734 (3)	0.037	$153 R$	Sn 2	F-1	1.925 (10)	0.037	16
Fe 3	C 2	1.689(10)	0.032	11	Sn 4	$\mathrm{Cl}-1$	2.276 (6)	0.018	11
Fe 3	F-1	1.679 (5)	0.028	27	Sn 4	F-1	1.843 (9)	0.032	13
Fe 3	$\mathrm{O}-2$	1.759 (3)	0.038	$204 R$	Sn 4	O-2	1.905 (8)	0.043	$29 R$
Fe 3 Ga 3	$\begin{array}{ll}\text { S } \\ \mathrm{O} & -2\end{array}$	2.149 (6)	0.022	$13 R$	Sn 4	$\mathrm{S}-2$	$2 \cdot 399$ (4)	0.020	$22 R$
Ga 3 Ga 3	$\begin{array}{ll}\mathrm{O} & -2 \\ \mathrm{~S} & -2\end{array}$	$1.730(3)$ $2 \cdot 163(4)$	0.022 0.013	$54 R$	Sr 2	O-2	2.118(6)	0.078	192
Ge 4	$\mathrm{S}-2$ $\mathrm{O}-2$	$2.163(4)$ 1.748 (2)	0.013 0.025	$13 R$ $181 R$	Ta 5	O-2	1.920 (5)	0.044	66 R
Ge 4	S -2	$2 \cdot 217$ (4)	0.020	22R	Te 4	O $\mathrm{O}-2$ -2	2.032 (5)	0.021	$17 R$
H 1	N-3	$0 \cdot 885$ (6)	0.100	243 R	Te 6	O-2	1.917 (8)	0.019 0.053	$60 R$ $46 R$
H 1	O-2	0.882 (3)	0.111	$1443 R$	Th 4	F-1	2.068 (4)	0.014	$11 R$
Hg 2	O-2	1.972 (9)	0.060	$44 R$	Ti 4	O-2	1-815(4)	0.037	$107 R$
Hg 2	S -2	$2 \cdot 308$ (6)	0.027	20	T1 1	I -1	$2 \cdot 822$ (8)	0.033	19
Ho 3	O -2	2.025 (5)	0.023	$21 R$	T1 1	S -2	$2 \cdot 545$ (8)	0.057	48
	O-2	2.003 (8)	0.050	$36 R$	U 4	F-1	2.038 (6)	0.019	$11 R$
	$\begin{array}{lll}\text { F } & -1 \\ \mathrm{O} & -2\end{array}$	$1.792(9)$ $1.902(8)$	0.028	11	U 6	O-2	2.075 (6)	0.046	$62 R$
	O -2	1.902 (8)	0.050	36 R	V 3	O-2	1.743 (5)	0.019	$18 R$
	S -2	$2 \cdot 370$ (3)	0.017	37 R	V 4	O-2	1.784 (6)	0.027	24 R
	$\begin{array}{cl}\mathrm{Cl}-1 \\ \mathrm{~F} & \text {-1 }\end{array}$	$2 \cdot 519$ (8)	0.070	72	V 5	O-2	1.803 (3)	0.031	$91 R$
	F-1	1.992 (7)	0.093	178	W 6	O-2	1.917 (4)	0.040	$84 R$
K 1	O-2	$2 \cdot 132$ (4)	0.092	512	Y 3	O-2	$2 \cdot 019$ (9)	0.070	$64 R$
La 3	O -2	$2 \cdot 172$ (5)	0.037	66 R	Yb 3	O-2	1.965 (9)	0.036	$16 R$
La 3	S -2	$2 \cdot 643$ (5)	0.021	20	Zn 2	$\mathrm{Cl}-1$	$2 \cdot 027$ (8)	0.025	11
Li 1	F-1	$1 \cdot 360$ (6)	0.038	44 R	Zn 2	O-2	1.704 (3)	0.039	148 R
Li 1	O-2	$1 \cdot 466$ (3)	0.062	333	Zr 4	F-1	1.846 (7)	0.025	$15 R$
Mg 2	F-1	1.578 (7)	0.026	15	Zr 4	O-2	1.928 (3)	0.027	63 R

treated specially in any careful analysis of bond valences.

Fig. 1 gives the correlation between bond valence and $H \cdots X$ distance for a variety of anions (X) and is an extension of that given by Brown (1976b). It
has been found to give good valences for hydrogen bonds where the donor is O or C but it gives values a little low where the donor is N . In using this graph it is important to remember that since X -ray diffraction locates the centroid of the electron density rather
than the position of the nucleus, the H atom appears to be closer to the donor anion than it actually is. This fact, combined with the large uncertainties in the determination of the H position, make it desirable to move the H atom to a position about $1 \cdot 0 \AA$ from the donor ($0.95 \AA$ for $\mathrm{O}, 1 \cdot 10 \AA$ for C , etc.) before using the figure.
Although the position of the H atom is still uncertain even after the shift, the valence of the $\mathrm{H} \cdots \boldsymbol{X}$ (acceptor) bond can be well determined because the valence is not sensitive to small uncertainties in bond length. By contrast the (donor) $X-H$ bond valence is extremely sensitive to small uncertainties in distance. Consequently the (donor) $X-\mathrm{H}$ valence is best determined by subtracting the sum of the $\mathrm{H} \cdots X$ (acceptor) valences from $1 \cdot 0$.
When the position of the H atom is not known and cannot be predicted a different approach is needed. In the case of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ bonds one can use Fig. 2 which shows the correlation between the $\mathrm{H} \cdots \mathrm{O}$ bond valence and the O-O distance. This graph has been constructed on the assumption that the degree of bending in the hydrogen bond follows the trend

Fig. 1. Bond-valence-bond-length correlation for $H \cdots X$ bonds. The different horizontal scales are to be used depending on the nature of X, e.g. an $\mathrm{H} \cdots \mathrm{N}$ bond of length $2.5 \AA$ has a valence of $0 \cdot 08$.

Fig. 2. Bond valence for $\mathrm{H} \cdots \mathrm{O}$ as a function of $\mathrm{O} \cdots \mathrm{O}$ distance assuming normal $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ bond angles.

Table 2. Values of $r_{c}(\AA)$ and $r_{a}(\AA)$
(a) Values of r_{c}

Table 3. Correction for non-bonded d electrons

Number of d electrons	$D(\AA)$	Number of d electrons	$D(\AA)$
0	0.0	6	0.033
1	0.020	7	-0.007
2	0.040	8	0.140
3	0.060	9	0.220
4	0.030	10	0.380
5	-0.005		

observed by Brown (1976a). This may not be true in individual cases but the difference will not be large and for many purposes Fig. 2 can give adequate results.

We wish to acknowledge the receipt of an operating grant from the Natural Sciences and Engineering Research Council of Canada.

References

Altermatt, D. \& Brown, I. D. (1985). Acta Cryst. B41, 240-244. Bergerhoff, G., Hundt, R., Sievers, R. \& Brown, 1: D. (1983). J. Chem. Inf. 23, 66-69.

Brown, I. D. (1976a). Acta Cryst. A32, 24-31.
Brown, I. D. (1976b). Acta Cryst. A32, 786-792.
Brown, I. D. (1980). Structure and Bonding in Crystals, Vol. II, edited by M. O’Keeffe \& A. Navrotsky, pp. 1-30. New York: Academic Press.
Brown, I. D. \& Shannon, R. D. (1973). Acta Cryst. A29, 266282.

Brown, I. D. \& Wu, K. K. (1976). Acta Cryst. B32, 1957-1959.

